Very High Output MB Neodymium Driver

KeyFeatures

101 dB SPL 1W / 1m average sensitivity
75 mm (3 in) Interleaved Sandwich Voice coil (ISV)
450 W AES power handling
Neodymium magnet assembly
Double Demodulating Rings (DDR) for lower distortion and reduced inductance
Humidity resistant cone
Suitable for midbass frequency reproduction

Description

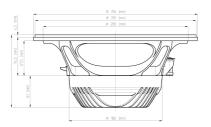
The 12ND710 has been specifically designed for use either as a midbass driver in compact 2-way reflex enclosures or as a direct radiating or horn loaded, dedicated midrange driver, in multi-way touring and fixed installation concert and arena systems.

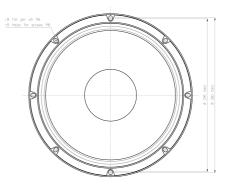
The neodymium magnet assembly assures high flux concentration, low power compression and excellent heat exchange because the external magnet configuration is considerably more efficient than traditional under-pole magnet topology.

Consequently, high levels of force factor and power handling with an optimum power to weight ratio have been achieved

Direct coupling of the special design basket and magnetic assembly with the large heat sink facilitates thermal flux through the ambient air, increasing the power handling capabilities and lowering the power compression.

The curvilinear paper cone has been created with a special high strength wood pulp designed to achieve the best possible linearity within its intended frequency range and to control bell-mode resonances around the cone circumference. The cone is carried by a multiroll suspension formed from a linen-like material which is more resistant to aging and fatigue than traditional materials. The already low distortion and sound quality are further improved by the use of Double Demodulating Rings technology (DDR) designed to dramatically reduce the intermodulation and harmonic distortion and improve the transient response.


The 12ND710 implements Interleaved Sandwich Voice coil technology (ISV), in which an aluminum coil is wound inside and outside a high strength fiberglas former, providing a better thermal and mechanical performance than conventional coils.


A proprietary humidity-block cone treatment makes the transducer suitable for outdoor use in adverse weather conditions. In addition, a special coating applied to both the top and back plates makes the 12ND710 far more resistant to the corrosive effects of salts and oxidization.

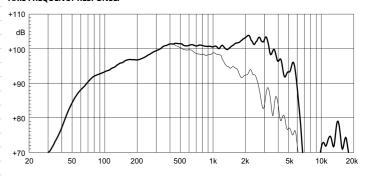
Models

Model	Code	Information
022128N710	022128N710	8 Ohm
027128N710	027128N710	R-kit

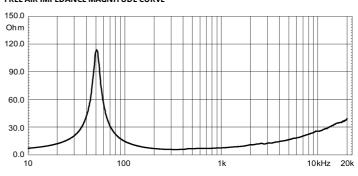
Very High Output MB Neodymium Driver

General Specifications

Nominal Diameter	300 mm (12 in)
Rated Impedance	8 Ohm
AES Power	450W
Program Power	700W
Peak Power	1400W
Sensitivity	101 dB
Frequency Range	60 ÷ 6000Hz
Power Compression @-10dB	0,6 dB
Power Compression @-3dB	2 dB
Power Compression @Full Power	2,8 dB
Max Recomm. Frequency	2000 Hz
Recomm. Enclosure Volume	10 ÷ 80 lt. (0,35÷ 1.41 cuft)
Max Peak To Peak Excursion	22 mm (0,9 in)
Voice Coil Diameter	75 mm (3 in)
Voice Coil Winding Material	aluminum
Suspension	M-roll, Polycotton
Cone	Curvilinear, Paper


Thiele Small Parameters

Fs	52 Hz
Re	5 Ohm
Sd	0,053 sq.mt. (82,2 sq.in.)
Qms	6
Qes	0,2
Qts	0,2
Vas	92 lt. (3,2 cuft)
Mms	40 gr. (88,3 lb)
BL	18 Tm
Linear Mathematical Xmax	± 5 mm (± 0,20 in)
Le (1kHz)	1 mH
Ref. Efficiency 1W@1m (half space)	100 dB


Mounting information

Overall diameter	315 mm (12,4 in)	
N. of mounting holes and bolt	8	
Mounting holes diameter	7,15 mm (0,3 in)	
Bolt circle diameter	296-300 mm (11,65-11,8 in)	
Front mount baffle cutout ø	282 mm (11,1 in)	
Rear mount baffle cutout ø	282 mm (11,1 in)	
Total depth	141mm (5,6 in)	
Flange and gasket thickness	11,5 mm (0,5 in)	
Flange and gasket thickness	11,5 mm (0,5 in)	
Net weight	4,7 kg (9,1 lb)	
Shipping weight	5.1 kg (11.24 lb)	
CardBoard Packaging dimensions	332 x 332 x 184 mm(13,07 x 13,07 x 7,24 in)	

FREQUENCY RESPONSE CURVE OF 12ND710 ON 50 LT ENCLOSURE TUNED AT 60HZ. THE ENCLOSURE CLOSES THE REAR OF THE DRIVER. THE THIN LINE REPRESENTS 45 DEG. OFF AXIS FREQUENCY RESPONSE.

FREE AIR IMPEDANCE MAGNITUDE CURVE

Notes

- (1) AES power is determined according to AES2-1984 (r2003) standard $\,$
- (2) Program power rating is measured in 50 It enclosure tuned at 60Hz using a 40-400Hz band (3) The peak power rating represents the maximum permitted instantaneous peak power level over a maximum period of 10ms which will be withstood by the loudspeaker whitout damage. (4) Sensitivity represents the averaged value of acoustic output as measured on the forward central axis of cone, at distance 1m from the baffle panel, when connected to 2,83 V sine wave test signal swept between 100Hz and 500Hz with the test specimen mounted in the same enclosure as given for (1) above.
- (5) Frequency range is given as the band of frequencies delineated by the lower and upperlimits where the output level drops by 10 dB below the rated sensitivity in half space environment.
 (6) Power compression represents the loss of sensitivity for the specified power, measured from 50-500 Hz, aftea a 5 min pink noise preconditioning test at specified power.
- (7) Thiele Small parameters are measured after the test specimen has been conditioned by 450 W AES power and represent the expected long term parameters after a short period of use. (8) Linear Math. Xmax is calculated as (Hvc-Hg)/2 + Hg/4 where Hvc is the coil depth and Hg is the gap depth.