

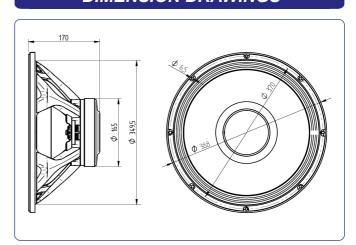
15MC500

LOW & MID FREQUENCY TRANSDUCER

KEY FEATURES

- High power handling: 1.000 W program power
- 2,5" copper wire voice coil
- Malt Cross[©] Cooling System
- Low power compression looses
- High sensitiviy: 98 dB
- FEA optimized magnetic circuit
- Designed with MMSS technology for high control, linearity and low harmonic distortion
- Aluminum demodulating ring
- Waterproof cone treatment on both sides of the cone
- Extended controlled displacement (X_{max}): 8 mm
- X_{damage} ± 40 mm
- Weight 6,2 kg
- Optimized for 2 or 3 way PA systems and line array for utlimate professional applications

TECHNICAL SPECIFICATIONS


Nominal diameter	380 mm 15 in
Rated impedance	8 Ω
Minimum impedance	6,6 Ω
Power capacity*	500 W _{AES}
Program power	1.000 W
Sensitivity	98 dB @ 1W @ Z _N
Frequency range	50 - 4.000 Hz
Recom. enclosure vol.	60 / 150 I 2,10 / 5,25 ft ³
Voice coil diameter	63,5 mm 2,5 in
BI factor	18,25 N/A
Moving mass	0,098 kg
Voice coil length	19,5 mm
Air gap height	10 mm
X _{damage} (peak to peak)	40 mm

THIELE-SMALL PARAMETERS**

Resonant frequency, f _s	46 Hz
D.C. Voice coil resistance, R _e	5,7 Ω
Mechanical Quality Factor, Q _{ms}	8
Electrical Quality Factor, Q _{es}	0,49
Total Quality Factor, Q _{ts}	0,46
Equivalent Air Volume to C _{ms} , V _{as}	131,5 I
Mechanical Compliance, C _{ms}	120 μm / N
Mechanical Resistance, R _{ms}	3,5 kg / s
Efficiency, η ₀	2,55 %
Effective Surface Area, S _d	$0,088 \text{ m}^2$
Maximum Displacement, X _{max} ***	8 mm
Displacement Volume, V _d	704 cm ³
Voice Coil Inductance, Le	1,15 mH

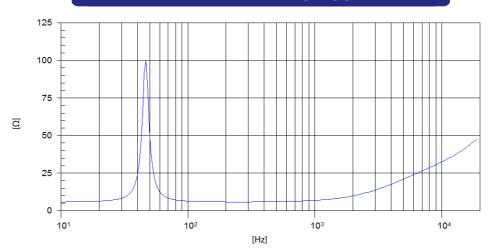
DIMENSION DRAWINGS

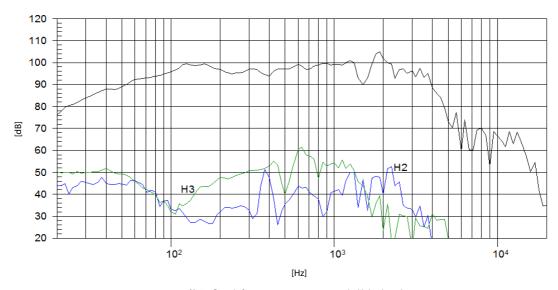
MOUNTING INFORMATION

Overall diameter	388 mm	15,28 in
Bolt circle diameter	370 mm	14,57 in
Baffle cutout diameter:		
- Front mount	349,5 mm	13,76 in
Depth	170 mm	6,70 in
Net weight	6,2 kg	13,7 lb
Shipping weight	7,2 kg	15,9 lb

Notes

- * The power capaticty is determined according to AES2-1984 (r2003) standard. Program power is defined as the transducer's ability to handle normal music program material.
- ** T-S parameters are measured after an exercise period using a preconditioning power test. The measurements are carried out with a velocity-current laser transducer and will reflect the long term parameters (once the loudspeaker has been working for a short period of time).
- *** The X_{max} is calculated as $(L_{VC}$ $H_{ag})/2$ + $(H_{ag}/3,5)$, where L_{VC} is the voice coil length and H_{ag} is the air gap height.




15MC500

LOW & MID FREQUENCY TRANSDUCER

FREE AIR IMPEDANCE CURVE

FREQUENCY RESPONSE AND DISTORTION

Note: On axis frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m

beyma //

Polígono Industrial Moncada II • C/. Pont Sec, 1c • 46113 MONCADA - Valencia (Spain)
• Tel.: (34) 96 130 13 75 • Fax: (34) 96 130 15 07 • http://www.beyma.com • E-mail: beyma@beyma.com •

